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A B S T R A C T   

Embodied cognition theories propose that abstract concepts are grounded in a variety of exogenous and 
endogenous experiences which may be flexibly activated across contexts and tasks. In three experiments, we 
explored how semantic size (i.e., the magnitude, dimension or extent of an object or a concept) of abstract (vs 
concrete) concepts is mentally represented. We show that abstract size is metaphorically associated with the 
physical size of concrete objects (Experiment 1) and can produce a semantic-font size congruency effect com
parable to that demonstrated in concrete words during online lexical processing (Experiment 2). Critically, this 
size congruency effect is large when a word is judged by its semantic size but significantly smaller when it is 
judged by its emotionality (Experiment 3), regardless of concreteness. Our results suggest that semantic size of 
abstract concepts can be grounded in visual size, which is activated adaptively under different task demands. The 
present findings advocate flexible embodiment of semantic representations, with an emphasis on the role of task 
effects on conceptual processing.   

Introduction 

How do we understand concepts? Traditional views of conceptual 
processing hold that concepts are represented in arbitrarily defined 
symbols like car or love (Fodor, 1975; Pylyshyn, 1984). Such symbolic 
representations are ungrounded – that is, without intrinsic links to their 
referents (cf. the symbol grounding problem; Harnad, 1990). To address 
this issue, recent embodied theories of cognition propose that concepts 
must be represented in our multimodal experiences (Barsalou, 1999, 
2008). This hypothesis has been supported by a vast body of empirical 
evidence linking language with perception and action (e.g., Fischer & 
Zwaan, 2008; Glenberg & Gallese, 2012; Glenberg & Kaschak, 2002; 
Pulvermüller, 2005; Speer et al., 2009). Behaviourally, language 
comprehension of perceptual- and action-related concepts is often 
modulated, respectively, by concurrent perceptual and motor tasks 
(Glenberg & Kaschak, 2002; Zwaan et al., 2002; Zwaan & Taylor, 2006). 
Neuroanatomically, processing sensory- and action-related concepts 
typically recruits neural substrates that are engaged, respectively, in 
perception and action (Kiefer et al., 2008; Pulvermüller, 2005, 2013). 
While most empirical evidence favours an (at least partially) embodied 
view of conceptual processing, such data have been predominantly 
gathered in relation to concrete concepts, with some embodiment effects 

failing to replicate (e.g., Morey et al., 2021). Critically, it remains 
inconclusive how abstract concepts, such as love and freedom, are 
mentally represented under an embodied framework (Borghi et al., 
2017). 

While some theorists have proposed complementary dis-embodied 
(e.g., linguistic) representations for abstract concepts (Andrews et al., 
2014; Borghi et al., 2018b; Dove, 2011), several proposals have also 
been put forward to explore the embodiment of abstract concepts 
(Barsalou & Wiemer-Hastings, 2005; Connell et al., 2018; Kousta et al., 
2011; Lakoff, 1987; Lakoff & Johnson, 1999) – either through exogenous 
sensory and motor experiences, or through endogenous affective, 
introspective experiences. 

Diverse experiential grounding in abstract concepts 

The “exogenous grounding” hypothesis proposes that abstract con
cepts may nonetheless be grounded in sensorimotor experiences of the 
external world. Here, it is proposed that, despite (or because of) not 
having physical referents, abstract ideas are often understood and 
expressed as metaphorical extensions from their concrete cousins 
(Gentner & Asmuth, 2019; Lakoff & Johnson, 1999). For instance, love is 
often explained in metaphors such as “journey” or “sweet”, and may 
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actually be grounded in the experience of making a journey or tasting 
sweetness. This hypothesis is supported by some behavioural evidence. 
For instance, Boroditsky and Ramscar (2002) demonstrated that the 
understanding of the abstract concept time could be influenced by rep
resentations of spatial experience such as making an air journey or 
waiting in a lunch line. In other words, time may simply ‘borrow’ ex
periences of physical activity (occurring over time). Similarly, mental 
representations of abstract information transfer (e.g., “You are delegating 
responsibilities to Anna”) may metaphorically originate from experiences 
of physical movements (Glenberg et al., 2008). 

The “endogenous grounding” hypothesis postulates that abstract 
concepts may instead rely on experiences fundamentally different to 
those associated with concrete concepts. While concrete concepts are 
closely linked to experiences of the external world, abstract concepts 
may rely more on endogenous experiences such as inner speech (Borghi 
et al., 2018b), emotion (Kousta et al., 2011), introception (Connell et al., 
2018) and introspection (Barsalou & Wiemer-Hastings, 2005). For 
instance, Kousta et al. (2011) showed that abstract concepts were 
overall more emotionally charged than concrete ones, enjoying a re
sidual processing advantage once differences in imageability and 
context availability were accounted for. Using fMRI, Vigliocco et al. 
(2014) further demonstrated higher activation of the rostral anterior 
cingulate cortex (rACC; an area associated with emotional processing) 
during lexical processing of abstract relative to concrete words. Barsalou 
and Wiemer-Hastings (2005) proposed that, in comparison to their 
concrete cousins, abstract concepts rely more on introspection and on 
social aspects of situations. They asked participants to generate prop
erties of highly abstract (e.g., truth, freedom, invention), highly concrete 
(e.g., sofa, car, bird), and intermediate (e.g., cooking, farming, carpeting) 
concepts that were preceded by short scenarios. For concrete concepts, 
participants tended to generate physical properties of the concepts and 
pick out other concrete objects that were associated with the concepts. 
In contrast, participants focused more on the social, situational, or 
introspective aspects of the abstract concepts. 

Although these grounding approaches are useful in their own right, 
they may be restricted to subsets of abstract concepts under investigation 
(e.g., temporal concepts, concepts with emotional contents, etc.), and 
may not be generalisable to all abstract concepts. For example, recent 
challenges to the affective grounding approach argue that not all ab
stract concepts may be grounded in emotion. In an fMRI study, Skipper 
and Olson (2014) showed that the increased activation in the rACC in 
Vigliocco et al.’s (2014) study may have reflected unbalanced emotional 
valence between abstract and concrete words, as it did not respond to 
abstractness once valence was matched between abstract and concrete 
words. Although emotional valence may be stronger in abstract than 
concrete words overall (Kousta et al., 2011), it may not characterise the 
concreteness of a concept diagnostically. For abstract words that lack 
emotional content (e.g., thought, logic), other experiential grounding (e. 
g., in the motor system) may play a more dominant role (Dreyer & 
Pulvermüller, 2018). 

One way to address the generalisability of these grounding ap
proaches is to recognise that they are not mutually exclusive. For 
instance, while love can be metaphorically linked to a journey or the 
taste of sweetness, it can also be represented in feelings of happiness and 
in social situations of a romantic dinner or a wedding. The recent 
emergence of multidimensional views of conceptual representations 
(Binder et al., 2016; Borghi et al., 2018a; Conca et al., 2021; Crutch 
et al., 2013; Fernandino et al., 2016; Harpaintner et al., 2018; Villani 
et al., 2019) has permitted alternative accounts of experiential 
grounding to coexist in abstract concepts. For instance, Crutch et al. 
(2013) collected “abstract conceptual feature” (ACF) ratings to quantify 
the relevance of 12 semantic attributes (e.g., sensation, action, thought, 
emotion, etc.) to a given word. They found that semantic relatedness in 
this 12-dimensional space (as measured in Euclidean distances between 
words) reliably predicted an aphasic patient’s ability to semantically 
discriminate two words. In contrast, neither word usage-based semantic 

metrics (Latent Semantic Analysis (LSA) cosines; Landauer & Dumais, 
1997) nor individual semantic attributes were predictive. Troche et al. 
(2014) reduced these 12 dimensions into three latent dimensions of 
perceptual salience, affective association, and magnitude. They found 
that concrete and abstract words could be represented in this single 
semantic space with overlapping yet distinct topographies. The most 
comprehensive brain-based multidimensional semantic space to date is 
provided by Binder et al. (2016). They normed the salience of 65 
experiential attributes, including sensory, motor, social, emotional, and 
cognitive attributes, for over 500 English words. They found that ab
stract entities could be distinguished from concrete ones on 57 of the 65 
attributes, and were particularly salient on attributes related to tempo
ral, causal, social, and emotional experiences. In a follow-up fMRI study, 
the 65-dimensional semantic model of word meaning successfully pre
dicted neural activation patterns of trained and novel single words, as 
well as sentences that contained these words (Anderson et al., 2017). 

However, these multidimensional approaches have so far focused on 
stable and invariant aspects of conceptual representations (cf. Machery, 
2015), which are captured via semantic ratings on decontextualised 
words. Although heterogenous experiential groundings can be captured 
simultaneously in multidimensional semantic spaces, little is known 
how they might interact with contextual factors such as the environ
ment/situation or task conditions. One recent study observed that 
multidimensional conceptual representations can shift in response to 
significant events such as the Covid-19 pandemic (Mazzuca et al., 2022). 
This resonates with the idea that concepts are dynamic and flexible in 
nature (Barsalou, 1993; Connell & Lynott, 2014), and may be instanti
ated by differential activation of semantic representations across con
texts (Lupyan & Casasanto, 2015). 

Testing flexibility of abstract conceptual representations 

Indeed, a key prediction of the embodied perspective emphasises 
that experience-based representations are inherently flexible and can 
take many forms across contexts (Lebois et al., 2015; Yee & Thompson- 
Schill, 2016) and task demands (Wilson & Golonka, 2013). Abstract 
conceptual representations may be particularly flexible because they can 
be simultaneously grounded in a more diverse range of loosely associ
ated experiences, events, and situations (Barsalou & Wiemer-Hastings, 
2005; Borghi et al., 2019; Kousta et al., 2011; Lakoff, 1987; Schwa
nenflugel, 1991; Schwanenflugel et al., 1988). The relative contribu
tions of these diverse experiences would depend on the communicative 
and situational context an abstract concept is embedded in (Zwaan, 
2014). For example, love could be simultaneously represented in the 
taste of sweetness and feelings of happiness. When choosing chocolates 
for Valentine’s Day, love may be conceptualised more in the taste of 
sweetness, whose relevance may wane considerably in the context of 
hugging a baby. Understanding how grounded representations can be 
flexibly formed across contexts may provide key insights into recon
ciling alternative theories of abstractness. Such findings may help 
reframe the discussion on conceptual processing in general, promoting a 
paradigm shift from invariantism (e.g., Machery, 2015) to contextualism 
(e.g., Barsalou, 1993; Connell & Lynott, 2014). 

To this end, we tested the hypothesis that abstract conceptual rep
resentations are more flexible than concrete representations. Specif
ically, we examined how semantic size, a universal semantic property, 
may be flexibly represented in abstract (vs concrete) concepts across 
contexts and tasks. Semantic size is a measure of something’s di
mensions, magnitude, or extent, and is a latent semantic factor (labelled 
“magnitude”) underlying multidimensional semantic spaces (Troche 
et al., 2014, 2017). Based on a norming database of 5,500 English words, 
semantic size is relatively evenly distributed along the concreteness 
continuum, and can be either big (mountain, infinity) or small (caterpillar, 
zero) (Scott et al., 2019). It is therefore a common semantic dimension 
that can be examined in both abstract and concrete concepts, while 
being simultaneously grounded in distinct embodied experiences. 
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Research to date has shown that semantic size influences conceptual 
processing, particularly in concrete concepts that can be measured in 
physical size. Using a modified Stroop task, Rubinsten and Henik (2002) 
found a size congruency effect between semantic size and physical size. 
Participants were shown pairs of animal names that differed in semantic 
and font size (e.g., ant – LION1) and were explicitly asked to judge which 
of the two words presented was larger, in either semantic or font size. In 
both tasks, response times were faster on size congruent (ant – LION) 
than size incongruent stimuli (ANT – lion), suggesting an interaction 
between the activation of semantic size and the perception of physical (i. 
e., font) size. Similarly, Setti et al. (2009) asked participants to decide 
whether a pair of prime and target words (e.g., elephant - giraffe) 
belonged to the same category. They found that target words (e.g., 
giraffe) were responded to faster when preceded by a same-size prime (e. 
g., elephant) than a different-size prime (e.g., hare), suggesting that ob
ject size is elicited by concrete nouns. Using a more implicit lexical 
decision task, Sereno et al. (2009) observed that words representing big 
objects (cathedral, dinosaur, ocean) were recognised faster than words 
representing small objects (cigarette, parasite, apple). Although this effect 
could not be directly replicated in the US (Kang et al., 2011; Larranaga 
et al., 2022), it was reliably observed once word familiarity (bigger =
less familiar) and gender association (bigger = more masculine) differ
ences are controlled for (Larranaga et al., 2022), suggesting that 
nuanced socio-cultural differences (e.g., expressed via somewhat 
different word perceptions and associations in the US) may have masked 
the size effect in Kang et al.’s (2011) replication. Indeed, a mega- 
analysis of 4,568 English words showed that lexical decision times 
from the English Lexicon Project (Balota et al., 2007) were significantly 
and negatively predicted by semantic size, with familiarity, gender, and 
eight other lexico-semantic variables controlled for (Scott et al., 2019).2 

The bigger-is-faster advantage highlights a cognitive bias favouring 
larger objects over small ones and demonstrates that size may be an 
integral, automatically accessed aspect of concrete word processing. 

Interestingly, size is also widely used at the more abstract end of the 
concreteness spectrum. We often call the event of a wedding the “big 
day” and make statements like “I like big ideas” or “That’s a small 
mistake”. Intuitively, concepts like trust, eternal and crisis can be classi
fied as “big”, with concepts like trace, impulse and humble classified as 
“small”, as has been empirically confirmed by the semantic size ratings 
we collected in the Glasgow Norms (Scott et al., 2019). In a word 
recognition study, Yao et al. (2013) found that, similar to concrete 
words, semantically bigger abstract concepts (e.g., truth) were processed 
faster than semantically smaller abstract concepts (e.g., trace). This 
processing advantage was partially mediated by the emotions these 
concepts induced – a crisis feels “big” partly because it induces a strong 
emotion of fear; an aspect feels “small” partly because it lacks emotion. 
However, a significant proportion of the size effects was not accounted 
for by emotion. 

Can other embodied experiences also contribute to abstract size? 
Because there is a sense of heft or breadth with certain abstract words, 
which is generally expressed in terms of greater visual size in concrete 
words, abstract words may ‘borrow’ similar expressions of embodiment. 

Although abstract concepts such as a crisis cannot be seen or touched in 
the physical world, their meanings can be developed over repeated 
analogical comparison or metaphor use (Gentner & Asmuth, 2019). For 
example, “With endless queues at the petrol stations, the country is having a 
fuel supply crisis” compares the representation of crisis analogically to the 
visual experience of large crowds; “A midlife crisis is like a great shifting of 
earth” aligns the representation of crisis metaphorically to the sensory 
experience of an earthquake. Intuitively, semantically big abstract 
concepts (e.g., crisis) may be more commonly compared with exogenous 
experiences of larger size (e.g., an earthquake), whereas semantically 
small abstract concepts (e.g., remark) may be more commonly compared 
with exogenous experiences of smaller size (e.g., a drop in the sea). Over 
time, abstract concepts may become more structurally aligned with 
concrete metaphors (Gentner, 2010), with their semantic size more 
strongly grounded in exogenous experiences of physical size. 

The current study 

The current study aimed to understand the extent to which semantic 
size is flexibly represented in abstract (vs concrete) concepts. Building 
upon Yao et al.’s (2013) finding that abstract size is partially grounded 
in endogenous experience of emotion, we tested whether and how ab
stract size may be flexibly grounded in exogenous experience of physical 
(visual) size across contexts and tasks. We asked three specific questions: 
(1) Can abstract size be represented in physical size? (2) Is abstract size 
automatically represented in visual size during lexical processing? (3) 
Can abstract size be flexibly represented in visual size under different 
task conditions? We addressed these questions in three experiments. In 
Experiment 1, we tested whether abstract concepts can be metaphori
cally associated with concrete objects of various physical sizes in a 
forced association task. We predicted that if abstract size can be 
grounded in physical size, semantically big abstract concepts would 
more likely be associated with big physical objects, whereas semanti
cally small abstract concepts would more likely be associated with small 
physical objects. In Experiment 2, we examined the interaction between 
semantic size and visual (font) size during lexical processing of abstract 
and concrete words. We used a more implicit lexical decision task to test 
if visual size could be automatically activated in word recognition of 
abstract concepts without being forced to make exogenous associations. 
We predicted that visual size would be activated in lexical processing of 
both abstract and concrete concepts, producing a semantic-visual size 
congruency effect (i.e., faster lexical decisions when semantic and visual 
size match than when they mismatch; cf. Rubinsten & Henik, 2002). In 
Experiment 3, we investigated the flexibility of the semantic-visual size 
interaction via explicit judgements of a word’s size versus its emotion
ality. We predicted that if experiential grounding is more flexible in 
abstract than in concrete concepts, the semantic-visual size congruency 
effect would be stronger when judging a word’s size rather than its 
emotionality. We also predicted that the size congruency effect would be 
more task-dependent for abstract concepts, with concrete concepts less 
affected by task demands. 

Data availability 

The materials, data and analysis codes are freely available at: htt 
ps://osf.io/vpkze/. 

Experiment 1 

Experiment 1 aimed to probe potential metaphorical associations 
between abstract concepts and concrete objects of various physical sizes 
in offline forced choices. All participants gave written informed consent 
and the experimental procedure was approved by the University 
Research Ethics Committee at the University of Manchester. 

1 Here uppercase letters represent a lower-case word presented in larger font 
size.  

2 In addition to a replication study, Kang et al. (2011) also reported a lack of a 
size effect on lexical decision times from the English Lexicon Project. The 
discrepant results may be explained by (1) a relatively smaller sample of words 
analysed (N=324 vs 4568 in Scott et al., 2019); (2) a dichotomous classification 
of size (95 “big” vs 238 “small” words), which may not capture the nuanced size 
differences between individual words; and (3) a conservative hierarchical 
regression analysis where the size effects were examined on the residuals after 
effects of controlling variables were accounted for (vs a simultaneous regression 
analysis where the size effects were examined with controlling variables; cf. 
Scott et al., 2019). . 
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Participants 

As there were no similar studies to estimate the expected effect sizes, 
the sample size was determined by a pilot study (N = 72) on a less 
controlled set of concrete words and by convenience sampling of psy
chology undergraduate students at the time of research. 

Sixty-seven native English speakers (all females, Mage = 20.39, SDage 
= 2.91) from the University of Manchester participated in the experi
ment for one course credit. All participants had normal or corrected-to- 
normal vision and had not been diagnosed with any learning/language 
disorders (e.g., dyslexia). The experiment took approximately 10 min. 

Design and materials 

The experiment employed a 2 (Abstract Word Size: Big, Small) × 2 
(Concrete Triplet Type: Varying, Matched) within-participant design. 
Target words consisted of 110 abstract words from Yao et al. (2013). 
Half of the words described relatively big concepts (e.g., disaster) while 
the other half relatively small concepts (e.g., incident). Words were 
matched across conditions for (written) word frequency (log occur
rences per million) according to the British National Corpus (BNC; 
http://www.natcorp.ox.ac.uk/; Davies, 2004), and word length (num
ber of letters) on an item-by-item basis. 

Each abstract word pair (e.g., disaster-incident) was accompanied by 
three concrete metaphors. These three metaphors were either size- 
varying, referring to objects that were big (stadium), medium 

(costume), and small (nucleus), or size-matched, referring to items with 
similar semantic size ratings (tomato, candle, potato). They were all 
nouns (tagged as “substantive” in the BNC) with a mean concreteness 
rating of at least 5 out of 7 in the Glasgow Norms (Scott et al., 2019). 
Metaphors within a triplet were matched for word length exactly, and 
for word frequency within ± 0.2 Zipf from each other (van Heuven et al., 
2014). The size categories for size-varying triplets were determined 
based on the words’ semantic size ratings in the Glasgow Norms (<3 for 
small; 3.5 ≤ medium ≤ 4.5; >5 for big), whereas size-matched triplets 
consisted of three random words matched on their semantic size within 
± 0.3 rating points from each other. The semantic size of size-matched 
triplets, although equivalent within a triplet, varied between triplets. 
To ensure that size-dependent metaphorical associations were not 
confounded by semantic associations, each concrete word had a cosine 
similarity of ≤ 0.2 with their respective Big and Small abstract words, 
according to the GloVe pre-trained word vector trained on 840 billion 
tokens of web data, varying on 300 dimensions (Pennington et al., 
2014). A large pool of candidate triplets was identified by running this 
pipeline iteratively using LexOPS (Taylor et al., 2020). Words within 
each triplet were inspected and hand-picked to ensure they were: (1) all 
animate or all inanimate; (2) not ambiguous (i.e., did not have both big 
and small meanings); and (3) not used more than three times across the 
stimulus set. The target words were embedded in sentence fragments 
that ended with “is like a(n)…”. The specifications of the word stimuli 
are summarised in Fig. 1. All sentence fragments and word stimuli are 
listed in Table S1. 

Fig. 1. Semantic size, length, and frequency (Zipf) values for matched triplets of concrete words in the (A) size-varying and (B) size-matched conditions. Points 
represent individual words, with matched triplets joined by lines. Violin plots show the distributions of variables for each matched item. Match numbers in A, for size- 
varying triplets, correspond to 1 = “big”, 2 = “medium”, and 3 = “small” concrete words. Match Numbers in B, for size-matched triplets, correspond to 1 = word1, 2 
= word2, and 3 = word3 concrete words. 
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Procedure 

The experiment was implemented online using Qualtrics 
(https://www.qualtrics.com). Participants were presented with a series 
of sentence fragments with the target word highlighted in bold (e.g., A 
crisis is like a(n)…). Each sentence fragment was followed by a triplet of 
candidate words in a random order (e.g., stadium, costume, nucleus for 
the size-varying condition; or tomato, candle, potato for the size-matched 
condition). Participants were instructed to select one of the three words 
that they thought best completed the sentence metaphorically. They 
were told to use their first impression in making this decision, and that 
there were no correct answers. 

Participants were presented with one trial at a time. After making 
their choice, they clicked on the “Next” button to proceed to the next 
trial. The trials were presented in a random order for each participant. 
Participants’ choices were recorded for analysis. 

Results 

Participants’ word choices were coded as “big”, “medium” or “small” 
based on their semantic size. The percentages of “big”, “medium” and 
“small” responses are summarised in Table 1. Descriptively, Big abstract 
concepts were more likely to be associated with “big” (49%) than 
“medium” (26%) or “small” (25%) concrete objects. Small abstract 
words were more likely to be associated with “small” (46%) than “me
dium” (25%) or “big” (30%) concrete objects. 

We tested whether the observed size-congruent associations were 
statistically meaningful. We modelled the probabilities for choosing 
each response in a cumulative link mixed-effect model (CLMM) in R 
(https://www.r-project.org/) using the ‘ordinal’ package (https://CR 
AN.R-project.org/package=ordinal; Christensen, 2015). The CLMM 
was fitted with the Laplace approximation, with a logit link function and 
“flexible” thresholds (i.e., threshold locations were not constrained to 
be, e.g., symmetric or equidistant). The responses were coded in the 
order of 1 = “big”/word1, 2 = “medium”/word2 and 3 = “small”/ 
word3. The two fixed factors (Abstract Word Size, Concrete Triplet 
Type) were deviation-coded (0.5 = Big, − 0.5 = Small; 0.5 = Varying, 
− 0.5 = Matched). The fixed effect structure included the two main ef
fects and their interaction. The random effect structure included by- 
Subject and by-Target Word random intercepts and by-Subject random 
slopes for both fixed factors and their interaction, using the maximal 
random effects structure justified by the design (Barr et al., 2013). We 
tested significance via likelihood-ratio model comparisons between the 
full model and a model lacking each fixed effect of interest, yielding 
Likelihood-Ratio Chi-squared values (LRχ2) and associated p values. 

The two-way interaction was significant, b = -0.80, SE = 0.13, 
LRχ2(1) = 30, p <.001. Exploring the interaction, the effect of Abstract 
Word Size was significant when Concrete Triplet Size was Varying, b =
-.97, 95%CI = [-1.22, -.73], but not when Concrete Triplet Size was 
Matched, b = -.17, 95%CI = [-.41, .07]. This suggests that participants’ 
choices of concrete metaphors were significantly biased by Abstract 
Word Size when there was a size difference within the triplets. When the 
triplets were matched in size, responses were significantly less affected 
by Abstract Word Size, and the observed frequencies were close to those 
expected by chance. As a result of the Abstract Word Size effect in the 
size-varying triplet condition, the main effect of Abstract Word Size was 
also significant, b = -.57, SE = 0.10, LRχ2(1) = 26.4, p <.001, with 

bigger abstract words associated with bigger concrete metaphors and 
smaller abstract words associated with smaller concrete metaphors. The 
main effect of Concrete Triplet Type was not significant, b = -0.13, SE =
0.07, LRχ2(1) = 2.77, p = 0.096. 

Discussion 

Experiment 1 explored whether semantic size of abstract concepts 
may be metaphorically linked to physical size. Participants chose one of 
three concrete objects that best described an abstract concept meta
phorically. Participants were significantly more likely to select concrete 
words referring to bigger objects to describe semantically big abstract 
concepts, and concrete words referring to smaller objects to describe 
semantically small abstract concepts. Their choices were at chance level 
when the concrete objects were matched in size. Importantly, the size 
congruency effects could not be explained by differences in word fre
quency or length between the candidate words, or by differences in 
semantic associations between the target word and each of the three 
concrete objects. The results therefore support our prediction that ab
stract concepts can be metaphorically associated with concrete objects 
in terms of their size. This suggests that physical size must be activated 
for both abstract and concrete words to favour size-congruent associa
tions. It remains unclear, however, whether these associations reflect 
automatic activation of visual size in abstract concepts or were artifi
cially induced by the forced-choice nature of the task. That is, repre
sentations of physical size may not necessarily constitute the word’s 
semantic meaning during lexical processing. 

Experiment 2 

Experiment 2 tested whether representations of physical size are 
automatically activated during online lexical processing of abstract (vs 
concrete) concepts. In a lexical decision task, we examined the effects of 
semantic size and visual font size on word recognition of abstract versus 
concrete words. We chose the more implicit task of lexical decision 
because it requires relatively superficial semantic activation and does 
not explicitly require participants to associate abstract concepts with 
concrete metaphors. If a word’s canonical semantic representations 
comprise embodied visual size, we should observe faster response times 
when semantic size and font size are congruent (i.e., big word-large font, 
small word-little font) as opposed to when they are incongruent. As 
previously observed by Rubinsten and Henik (2002), we predicted such 
a size congruency effect in concrete words, given that visual size is an 
integral part of concrete objects. As reasoned in the Introduction and 
supported by findings from Experiment 1, we also predicted a similar 
size congruency effect for abstract words, assuming that visual size can 
indeed be automatically activated during lexical processing. Should a 
size congruency effect not be observed for abstract words, it would 
instead suggest that visual size is not a canonical abstract conceptual 
representation and that the size-congruent associations demonstrated in 
Experiment 1 were mostly likely driven by the forced-choice nature of 
the task. 

Participants 

As estimated in G*Power 3.1 (Faul et al., 2009), a minimum of 49 
participants was required to replicate the size effect reported by Yao 
et al., (2013) (mean Cohen’s f = .38 in a lexical decision task), in a 
multiple regression model with .05 alpha (2-tailed) and .8 power. 

Fifty-six native English speakers from the University of Glasgow 
participated in the experiment for two course credits. Three participants 
were excluded because their mean percentage error rate was greater 
than 15%, suggesting their lexical decisions were unusually poor. Three 
further participants were excluded because their mean RTs were more 
than 2 SDs longer than the group average, suggesting they were not 
responding based on first impressions. 

Table 1 
Percentage of responses by condition in Experiment 1.   

Size-Varying Triplet Size-Matched Triplet 

Abstract  
Word 

“big” “medium” “small” word1 word2 word3 

Big 49% 26% 25% 34% 34% 32% 
Small 30% 25% 46% 31% 33% 36%  

B. Yao et al.                                                                                                                                                                                                                                     
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The remaining 50 participants (40 females, 10 males, Mage = 21.9, 
SDage = 4.7) had normal or corrected-to-normal vision and had no 
diagnosed learning/language disorders (e.g., dyslexia). All participants 
gave written informed consent and the experimental procedure was 
approved by the College of Science and Engineering Ethics Committee at 
the University of Glasgow. The experiment took about 30 min to 
complete. 

Design and materials 

The experiment employed a 2 (Concreteness: Concrete, Abstract) × 2 
(Semantic Size: Big, Small) × 2 (Font Size: Large, Little) within- 
participants design. It comprised a total of 440 stimuli (220 words and 
220 nonwords) from Yao et al. (2013). Half of the 220 words had rela
tively concrete meanings (e.g., volcano) while the other half had rela
tively abstract meanings (e.g., dynasty). Within both Concreteness 
conditions, half of the words described relatively big objects or concepts 
(e.g., volcano or dynasty) while the other half described relatively small 
objects or concepts (e.g., apricot or literal). Across levels of Concreteness 
and Semantic Size, words were matched on an item-by-item basis for 
word frequency and word length. Word frequencies were obtained from 
the BNC database of 90 million written word tokens (Davies, 2004). All 
word stimuli are presented in the Supporting Information of Yao et al. 
(2013). Nonwords comprised pronounceable, orthographically legal 
pseudowords (e.g., tabanol) matched in length to word stimuli. 

Two stimulus lists were generated. In each list, half of the words in 
each condition were presented in large font size (90 pixels) and half 
were in little font size (30 pixels). Words presented in large font in one 
list were presented in little font in the other list and vice versa. Each list 
was assigned to 25 participants. 

Procedure 

The experiment was run using the OpenSesame software (Mathôt 
et al., 2012). The visual stimuli were presented on a grey background on 
a 24′′ monitor (60 Hz, 1920 × 1080 resolution; Dell Optiplex 9030 AIO 
Series) and the viewing distance was approximately 60 cm. The re
sponses were made on a QWERTY keyboard, and reaction times (RTs) 
were recorded with millisecond accuracy. 

Participants were tested individually. They were instructed that they 
would be presented with a series of letter strings and that they should 
decide as quickly and as accurately as possible whether each item was a 
real word or nonword by pressing the corresponding keys – the right 
CTRL key for words and the left CTRL key for nonwords. Participants 
were also told that items would be presented in larger or smaller font 
sizes to determine how font size affected their speed of recognition. 
Participants were first presented 16 practice trials to familiarise them
selves with the task. They were then presented with the 440 experi
mental items (220 words, 220 nonwords), with three break periods 
scheduled at regular intervals. 

Each trial consisted of the following events. A blank screen was 
initially presented for 750 ms, followed by the word “NEXT” in the 
centre of the screen for 200 ms. “NEXT” was displayed in blue, in a Serif 
font, at a size of 45 pixels, to act as a baseline point of reference between 
large and little font sizes. Another blank screen was presented for 500 ms 
and was replaced by a letter string presented centrally on the screen 
until the participant responded. Letter strings were presented in black 
Sans Serif font, using a size of either 90 or 30 pixels. Correct responses 
triggered the next trial. If participants made an error, “INCORRECT!” 
appeared centrally in 45-pixel red Serif font for 500 ms before the next 
trial began. Trials were presented in a different random order for each 
participant. 

Results 

Before analyses, RT data were pre-processed in line with previous 

studies (Kang et al., 2011; Sereno et al., 2009; Yao et al., 2013). Trials 
were excluded if responded to incorrectly (3.9% of word trials). The 
remaining trials with RTs of less than 250 ms or greater than 1500 ms 
were also removed. In addition, for each participant in each condition, 
trials with RTs more than two standard deviations greater than the mean 
for that participant in that condition were then excluded (with an 
additional average data loss of 5.4%). These procedures (error and 
outlier removal) resulted in an average RT data loss of 9.3% per 
participant. The median RT and %Correct data across Concreteness, 
Semantic Size, and Font Size conditions are presented in Table 2. 

As RTs were positively skewed, we fitted a Gamma family general
ised linear mixed-effect model (identity link) of RTs with the glmer 
function in the lme4 package (Bates et al., 2015) in R. We deviation- 
coded the three fixed factors (Concreteness, Semantic Size, Font Size). 
We included all main effects and interactions between the three factors 
in the fixed effect structure and employed the maximal random effect 
structure with Subject and Word as crossed random factors. The p-values 
for fixed effects were computed using Satterthwaites’s approximation 
using the lmerTest package (Kuznetsova et al., 2017). The results are 
reported in Table 3. 

There were significant main effects of Concreteness and Semantic 
Size, as well as a Semantic Size × Font Size interaction. In line with the 
literature, we found that Concrete words (573 ms)3 were recognised 
faster than Abstract words (590 ms). Similarly, responses to semanti
cally Big words (576 ms) were faster than those to semantically Small 
words (587 ms). Importantly, Font Size differentially affected RTs for 
semantically Big versus Small words, respectively. Big words were rec
ognised significantly faster when they were presented in Large font (571 
ms) than in Little font (580 ms), b = -9.0 ms, 95%CI = [-15.7, –2.3]. The 
opposite pattern, although not significant, applied to Small words: they 
were processed numerically slower when they were presented in Large 
font (589 ms) than in Little font (586 ms), b = 2.8 ms, 95%CI = [-4.0, 
9.6]. The interaction is illustrated in Fig. 2. 

Discussion 

Experiment 2 examined whether visual size was automatically acti
vated during lexical processing of concrete and abstract words. By 
manipulating the font size of the presented stimuli, we observed a sig
nificant size congruency effect, as evidenced by the Semantic Size ×
Font Size interaction. Regarding the interaction, we found that seman
tically Big words were recognised significantly faster when they were 
presented in Large versus Little font; however, semantically Small words 
were only recognised numerically faster when presented in Little versus 
Large font. It is possible that size congruency failed to reach significance 
for Small words because the Little font size (30 pixels) represented only a 
33% reduction in size from the reference font (45 pixels). We could not 

Table 2 
Median RTs (in ms) and %Correct across experimental conditions. Parentheses 
for RTs contain the interquartile range, while brackets for %Correct contain 95% 
binomial confidence intervals.    

Semantically Big Semantically Small   

Large Font Little Font Large Font Little Font 

Concrete RT 529 (118) 533 (126) 535 (132) 536 (126) 
% 
Correct 

98 [97, 98] 98 [97, 98] 96 [95, 97] 96 [94, 97] 

Abstract RT 535 (122) 545 (110) 553 (145) 550 (138) 
% 
Correct 

96 [95, 97] 95 [94, 96] 95 [94, 96] 95 [94, 96]  

3 All conditional means in the results section are model-estimated marginal 
means calculated using R package emmeans(). 
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use font sizes smaller than 30 pixels with a 1920 × 1080 resolution as 
the stimuli would be too small to see clearly from a typical viewing 
distance. In contrast, the Large font size (90 pixels) was 100% bigger 
than the reference font. On reflection, it would have been more prudent 
to select a reference font size of 60 pixels, splitting the difference be
tween Little and Large font sizes. 

Critically, the size congruency effect (Semantic Size × Font Size 
interaction) did not depend on Concreteness. Size congruency in Con
crete words is in line with previous research (Rubinsten & Henik, 2002), 
showing that processing concrete concepts activates sensory experience 
of the visual size of the denoted object. Size congruency in Abstract 
words is comparably less straightforward to interpret. One interpreta
tion would be that visual size information must be activated during 
lexical processing of abstract words, which then interacts with the 
perceived font size of the text. However, an alternative interpretation 
might argue that size congruency in abstract words is not necessarily of a 
visual nature, given that abstract concepts do not have physical refer
ents. Instead, the observed effects may be mediated by congruency be
tween the emotional make-up of abstract words and the emotion elicited 
by font size itself. It has been reported, for example, that larger font sizes 
may enhance emotional processing of written words (Bayer et al., 2012). 
Given that semantically big abstract concepts are more emotionally 
charged than small abstract concepts (Yao et al., 2013), their processing 
may be facilitated when font size-elicited emotion corresponds with 
their semantic emotionality. For instance, truth may be considered big in 
part because it elicits strong emotion (i.e., high arousal or absolute 
valence), which is more congruent with a higher level of emotion eli
cited by larger compared to smaller font sizes. As such, the size con
gruency effect observed in abstract concepts may not be driven solely by 
congruency of visual size, but also or instead by congruency of 

semantically- and font size-elicited emotion. 

Experiment 3 

Experiment 3 probed the nature and flexibility of the observed size 
congruency effect under different task conditions. Specifically, we 
manipulated the relevance of size and emotion by asking participants to 
explicitly judge the size of the presented word (Size Judgement; “Big” vs 
“Small”) and the emotionality (emotional arousal or absolute valence) of 
the presented word (Emotion Judgement; “Emotional” vs “Neutral”),4 

respectively. We predicted similar size congruency effects in Experiment 
3, depending on the nature of the effects and the foci of the tasks. If the 
size congruency effect in Experiment 2 reflected interactions between 
semantic and visual (font) size (i.e., a size congruency hypothesis), 
participants should be more likely and faster to judge semantically big 
words as “Big” when they are presented in a large font, and judge 
semantically small words as “Small” when they are in a little font. In 
contrast, if the size congruency effect in Experiment 2 reflected an 
interaction between semantic- and font size-elicited emotions (i.e., 
driven by emotion congruency), participants should be more likely and 
faster to judge semantically big words as “Emotional” (i.e., high arousal 
or absolute valence) when they are presented in a large font, and judge 
semantically small words as “Neutral” when they are presented in a little 
font. Crucially, we also predicted the task-dependence of size congru
ency effects would be stronger in abstract over concrete concepts, due to 
their hypothesised more flexible experiential grounding. 

Participants 

As estimated in G*Power 3.1 (Faul et al., 2009), a minimum of 39 
participants was required to replicate the size congruity effect in 
Rubinsten and Henik (2002) (Cohen’s d = .93 in a size judgement task), 
in a multiple regression model with .05 alpha (2-tailed) and .8 power. 

Fifty-two native English speakers from the University of Manchester 
community participated in the experiment for £3. Ten participants were 
excluded from the final analysis: one participant responded with the 
same key throughout the whole experiment; two participants’ mean RTs 
were more than 2 SDs longer than the group average, suggesting that 
they were not responding based on their first impressions; seven further 
participants’ size judgements on concrete objects had a hit rate lower 
than 70%, suggesting they were not attending to the demands of the 
task. 

The remaining 42 participants (27 female, 15 male, Mage = 24.4, 
SDage = 7.3) all had normal or corrected-to-normal vision and had no 
diagnosed learning/language disorders (e.g., dyslexia). All participants 
gave written informed consent and the experimental procedure was 
approved by the University Research Ethics Committee at the University 
of Manchester. The experiment took approximately 25 min. 

Design and materials 

The design and materials were the same as in Experiment 2 except 
that the nonwords were excluded. Four stimulus lists were generated to 
counterbalance for the font size manipulation and task order. 

Table 3 
Generalised linear mixed-effect model estimates of fixed effects on RTs in 
Experiment 2.  

Fixed effects b S.E. t p 

CNC ¡17.71 3.64 ¡4.86 <.001 
SemSize ¡11.36 3.49 ¡3.25 .001 
FontSize − 3.11 2.57 − 1.21 .226 
CNC × SemSize 2.98 6.99 .43 .670 
CNC × FontSize 4.93 4.82 1.02 .307 
SemSize £ FontSize ¡11.75 4.61 ¡2.55 .011 
CNC × SemSize × FontSize − 2.50 9.30 -.27 .788 

Note: CNC = Concreteness; SemSize = Semantic Size; FontSize = Font Size. 
Significant effects are highlighted in bold. 

Fig. 2. The estimated effects of font size on RTs by semantic size. Note: The y- 
axis shows the coefficients of the Font Size effects (effectively the RT difference 
between Large and Little Font conditions). Error bars represent the 95% con
fidence intervals. 

4 We did not distinguish between positive and negative valence in this study 
for three reasons. First, abstract size is associated with emotional arousal (Yao 
et al., 2013) . Second, both positively and negatively valenced words 
demonstrate facilitation relative to neutral words, regardless of polarity or 
assumed mechanisms (approach vs avoidance) (Kousta et al., 2009). Third, 
binary choices (Emotional-Neutral) were needed to match the binary choices in 
the Size Judgement task (Big-Small). 
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Procedure 

The experiment was run on a Dell Optiplex lab computer using the 
OpenSesame software (Mathôt et al., 2012). Participants received the 
same 220 words in the Size and Emotion Judgement blocks. 

In the Size Judgement block, participants were asked to decide, as 
quickly as possible and using first impressions, whether each word 
represented a BIG or SMALL thing or concept. They should press the 
right CTRL key if they felt the word represented something that was 
relatively big, or press the left CTRL key if the word represented 
something relatively small. 

In the Emotion Judgement block, they were asked to decide, as 
quickly as possible and using first impressions, whether each word 
represented an EMOTIONAL or NEUTRAL thing or concept. They were 
told that if something was emotionally charged, it can provoke either a 
positive or negative response. They were instructed to press the right 
CTRL key if they felt the word represented something that was strongly 
emotional, or press the left CTRL key for words that were relatively 
neutral. 

In each block, participants were first presented with 8 practice trials 
to familiarise themselves with the task, followed by the 220 experi
mental trials. Each trial consisted of the same events and timings that 
took place in Experiment 2, only without the post-response feedback. 
Within each block, trials were presented in a random order, with three 
breaks scheduled at regular intervals between the trials. Participants’ 
RTs and responses were recorded for analysis. 

Results 

We expected RTs in this experiment to be slower than those acquired 
during lexical decision because of the increased complexity of the 
judgement involved. Nevertheless, as participants had been instructed to 
respond as quickly as possible using first impressions, similar to 
Experiment 2, we excluded data based on (slightly longer) cut-offs. 
Responses with RTs less than 250 ms or greater than 3000 ms were 
removed (1.7% of trials). In addition, for each participant in each con
dition, RTs that were more than 2 SDs away from the mean were 
excluded (with a further data loss of 5.2%). These procedures resulted in 
an average RT data loss of 6.8% per participant. 

Size and emotion judgements 
We first examined how Big and Small words were judged by their size 

and emotion across Concreteness conditions. It is worth noting that 
there were no right or wrong answers in our judgement tasks. However, 
because we had predicted Big words to be judged as “Big” or 
“Emotional” and Small words would be judged as “Small” or “Neutral”, 
we coded participants’ responses as “Consistent” when participants 
categorised words in accordance with the hypothesised correspondence 
between semantic size and font size (Big-Large, Small-Little) in the Size 
Judgement task, and between semantic size and emotion (Big- 
Emotional, Small-Neutral) in the Emotion Judgement task. We quanti
fied the hit rate of each hypothesised correspondence in %Consistent 
responses. This enabled us to compare the two tasks and the size versus 
emotional congruency hypotheses on the same measure. To better 
illustrate the key size congruency effect and simplify the statistical 
model, we combined the Semantic Size and Font Size factors into a single 
Size Congruency factor. Size Congruency had two levels: Congruent 
(when Semantic Size and Font Size were congruent; i.e., Big-Large, 
Small-Little) and Incongruent (when Semantic Size and Font Size were 
incongruent; i.e., Big-Little, Small-Large). The mean %Consistent re
sponses and their standard deviations by task and conditions are pre
sented in Table 4. 

We fitted a binomial family generalised linear mixed model of binary 
response accuracy (1 = “consistent”, 0 = “inconsistent”) with a logit link 
function. We included a full factorial fixed effect structure with 
deviation-coded Task, Size Congruency and Concreteness, and a 

maximal random effect structure with Subject and Word as crossed 
random factors. The results are reported in Table 5. 

There were significant main effects of Task and Size Congruency: % 
Consistent responses were significantly higher in the Size Judgement 
task (93%)5 than in the Emotion Judgement task (69%), and was higher 
when semantic and font size were Congruent (86%) than when they 
were Incongruent (81%). The Size Congruency effect significantly 
depended on Task, which was significant in the Size Judgement task 
(Congruent: 95% vs Incongruent: 91%), b = .61, 95%CI = [.43, .79], but 
not in the Emotion Judgement task (Congruent: 70% vs Incongruent: 
67%), b = .16, 95%CI = [-.01, .32]. This Size Congruency × Task 
interaction is illustrated in Fig. 3A. There was also a significant inter
action between Task and Concreteness: %Consistent responses were 
higher when judging the Size of Concrete words (95%) versus Abstract 
words (89%), b = .89, 95%CI = [.31, 1.46], but was lower when judging 
the Emotionality of Concrete words (65%) versus Abstract words (72%), 
b = -.32, 95%CI = [-.88, .24]. This interaction is illustrated in Fig. 3B. 

RTs of size-congruent vs size-incongruent judgements 
Next, we examined how Task and Size Congruency influenced RTs. 

Since the overall %Consistent responses was far from being perfect in the 
Size Judgement task (86%) and especially in the Emotion Judgement 
task (60%), we coded the Effective Size Congruency by combining Font 
Size with participants’ subjective judgement of the word. That is, when a 
word in Large font was judged as “Big” or “Emotional” or when a word in 
Little font was judged as “Small” or “Neutral”, we considered it as a size 
congruent trial, regardless of whether this word was hypothesised to be 
Big or Small in the first place. This enabled us to tap into the effective size 
congruency effect according to participants’ actual responses. The me
dian RTs across Concreteness, Task, and Effective Size Congruency 
conditions are presented in Table 6. 

We fitted a Gamma family generalised linear mixed model of RTs 
(with an identity link function) using the glmer function in R. We 
included a full factorial fixed effect structure with deviation-coded Task, 
Effective Size Congruency, and Concreteness in the fixed effect structure 
and a maximal random effect structure with Subject and Word as crossed 

Table 4 
Mean %consistent responses (95% binomial confidence intervals in brackets) by 
task, size congruency, and concreteness.   

Size Judgement Emotion Judgement  

Congruent Incongruent Congruent Incongruent 

Concrete 90 [89, 92] 86 [85, 88] 56 [54, 58] 55 [53, 57] 
Abstract 87 [85, 88] 78 [77, 80] 67 [65, 69] 64 [62, 66] 

Note: Congruent denotes Semantic-Font Size conditions of Big-Large and Small- 
Little. Incongruent denotes Semantic-Font Size conditions of Big-Little and 
Small-Large. 

Table 5 
Generalised linear mixed-effect model estimates of fixed effects on %Consistent 
responses in Experiment 3.  

Fixed effects b S.E. z p 

Task 1.78 .19 9.21 <.001 
Size Congruency .38 .07 5.17 <.001 
CNC .27 .24 1.15 .252 
Task £ Size Congruency .45 .10 4.67 <.001 
Task £ CNC 1.21 .32 3.74 <.001 
Size Congruency × CNC − .11 .10 − 1.17 .240 
Task × Size Congruency × CNC − .23 .19 − 1.20 .230 

Note: CNC = Concreteness. Significant effects are highlighted in bold. 

5 Percentages reported are model-estimated marginal means. 
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random factors. The results are reported in Table 7. 
All three main effects were significant (ps < .001). Size Judgements 

(845 ms) were significantly slower than Emotion Judgements (778 ms). 
Judgements on Concrete words (766 ms) were faster than judgements on 
Abstract words (857 ms), and judgements were faster when the 
perceived size/emotionality and font size were congruent (801 ms) than 
when they were incongruent (823 ms). Importantly, this Effective Size 
Congruency effect significantly interacted with Task, as it was signifi
cant in the Size Judgement task (Congruent: 828 ms vs Incongruent: 864 
ms), b = -36.0, 95%CI = [-48.5, -23.5], but not in the Emotion Judge
ment task (Congruent: 774 ms vs Incongruent: 783 ms), b = -9.2, 95%CI 
= [-20.9, 2.4]. This Size Congruency × Task interaction is illustrated in 
Fig. 4. 

The non-significant effect of Effective Size Congruency observed in 
the Emotion Judgement task could be either due to an absence of an 
effect, or an absence of evidence for an effect. To better describe and 
assess evidence for this effect, we fit a Bayesian mixed effects model of 
RTs using the brm function from the brms package (Bürkner, 2017) for R. 
The same maximal mixed-effects structure was used as in the generalised 
linear mixed model fit with lme4, but we modelled the data with an 
Exponentially Modified Gaussian (ex-Gaussian) distribution family. We 
modelled the full mixed-effects model formula for the distribution’s mu 
(central tendency), and modelled population-level intercepts for the 
sigma (dispersion) and beta (skewness). We modelled mu with an identity 
link function, and modelled sigma and beta with log link functions. While 
Gamma family models are often fit with lme4, as a common distribution 
type supported by the package which is generally sensitive to large ef
fects, ex-Gaussian distributions more accurately describe the shape of 
the distribution of RTs (Dawson, 1988). We fitted three variants of the 
model: a model where all fixed effects were deviation coded, and two 
models dummy coded to estimate effects within each task. All models 
were fitted using the same weakly informative normal priors for fixed 
effects: the prior for the intercept for mu was specified as centred on 
1000 ms with an SD of 250; the priors for the intercepts of sigma and beta 
were specified as centred on 0 with an SD of 250; and the priors for all 
fixed effects (on mu) were specified as centred on 0 with an SD of 50. The 
priors for the variance of both random effects distributions (subject and 
item random effects) were specified as a weakly informative Student’s t- 
distribution centred on 0 (df = 2, mu = 0, sigma = 100). All Bayesian 
models were fitted with five chains, each consisting of 10,000 (7500 
warmup and 2500 sampling) iterations. To facilitate model conver
gence, the adapt_delta parameter was set to.99. Fixed effects estimated 
from the models’ posterior distributions are reported in Table 8. 

The interaction between effective size congruency and task, as esti
mated by the Bayesian ex-Gaussian model, is illustrated in Fig. 5. The 

Fig. 3. The estimated effects of size congruency (Panel A) and concreteness 
(Panel B) on %consistent responses by task. Note: Panel A. The y-axis shows the 
coefficients of the size congruency effect. A positive coefficient means % 
consistent responses is higher when size is congruent than incongruent. Panel B. 
The y-axis shows the coefficients of the concreteness effect. A positive coeffi
cient means %consistent responses is higher in concrete words than in abstract 
words. A negative coefficient means %consistent responses is higher in abstract 
words than in concrete words. 

Table 6 
Median RTs (in ms) across experimental conditions. Parentheses for RTs contain 
the interquartile range.   

Size Judgement Emotion Judgement  

Effective 
Size 
Congruent 

Effective Size 
Incongruent 

Effective 
Size 
Congruent 

Effective Size 
Incongruent 

Concrete 692 (264) 729 (277) 631 (279) 640 (285) 
Abstract 755 (355) 800 (372) 718 (309) 737 (312)  

Table 7 
Generalised linear mixed-effect model estimates of fixed effects on RTs in 
Experiment 3.  

Fixed effects b S.E. t p 

Task 67.18 10.18 6.60 <.001 
Effective Size Congruency –22.37 4.30 ¡5.20 <.001 
CNC ¡90.09 9.11 ¡9.89 <.001 
Task £ Effective Size Congruency ¡26.75 8.82 ¡3.03 .002 
Task × CNC − 5.55 13.92 − .40 .690 
Effective Size Congruency × CNC 8.98 7.68 1.17 .242 
Task × Effective Size Congruency × CNC − 2.02 13.00 − .16 .877 

Note: CNC = Concreteness. Significant effects are highlighted in bold. 

Fig. 4. The estimated effects of effective size congruency on RTs by task. Note: 
The y-axis shows the coefficients of the effective size congruency effects (i.e., 
the RT difference between congruent and incongruent conditions). Error bars 
represent the 95% confidence intervals. 
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posterior distributions confirm that the effect of Effective Size Congru
ency is strongly modulated by task, as it is substantially larger in the Size 
Judgement task than in the Emotion Judgement task. However, they 
also show an additional, unexpected finding of a smaller but non-zero 
effect of Effective Size Congruency in the Emotion Judgement task. 

Discussion 

Experiment 3 probed the nature and flexibility of the size congruency 
effect observed in Experiment 2 by manipulating the task relevance of 
size and emotion. We assessed how consistently semantic size was 
mapped to visual size (big-large, small-little) or to emotion (big- 
emotional, small-neutral) by explicitly asking participants to judge the 
size and emotionality of a given word, respectively. We also measured 
how fast the judgements were made. 

We replicated the size congruency effect on both measures and found 
that it did depend on task conditions (i.e., focusing on size or emotion 
aspects of words). In the Size Judgement task, semantically big words 
were more likely to be judged as “Big” when they were presented in a 
large rather than little font, while semantically small words were more 
likely to be judged as “Small” when they were presented in a little rather 
than large font. Size judgements were also faster when words were 
perceived as “Big” in a large font or were perceived as “Small” in a little 
font. By contrast, the size-emotion congruency effect was significantly 
weaker in the Emotion Judgement task. However, the effect of effective 
size congruency in the Emotion Judgement task was not significantly 
different from 0 in the generalised linear mixed-effects model, but was 
different from 0 in the Bayesian mixed model. This discrepancy was 
primarily due to the different distribution families used (Gamma vs ex- 

Gaussian). Taken together, the findings suggest that the size congruency 
effect observed in Experiment 2 predominantly reflected congruency 
between mentally simulated visual size (semantic processing) and 
visually perceived font size (visual processing). It remained inconclusive 
whether or not the size congruency effect may also be partially mediated 
by the congruency between the emotional make-up of abstract words 
and the emotion elicited by font sizes. 

However, the task-dependent size congruency effects did not interact 
with concreteness and was significant in both abstract and concrete 
words. This suggests that, contrary to our hypothesis, concrete con
ceptual representations are as flexible as abstract ones, at least in how 
semantic size is represented. This finding highlights the need to move 
beyond characterising distinctions between abstract and concrete con
cepts, and to study all concepts in situational contexts (Barsalou et al., 
2018). 

We also observed several other effects which we will discuss here. 
With regard to the “consistent” judgements made, we found a significant 
main effect of Task. Semantically big and small words were more 
consistently judged as “Big” and “Small”, respectively, in the Size 
Judgement task while the correspondence between semantic size and 
emotion (big-emotional, small-neutral) was significantly less consistent 
in the Emotion Judgement task. The Task effect significantly interacted 
with Concreteness. There were significantly more “consistent” judge
ments on concrete rather than abstract words in the size judgement task 
but relatively more “consistent” judgements on abstract rather than 
concrete words in the Emotion Judgement task. These findings are in 
line with previous findings that concrete size is grounded in sensori
motor experience of physical size whereas abstract size is more rooted in 
the magnitude of emotional experience (Yao et al., 2013). They also 
highlight that while abstract words may be semantically more diverse 
(Hoffman et al., 2013) and situationally less systematic (Davis et al., 
2020) than concrete words overall, they can be flexibly represented in a 
focused and systematic manner under specific contexts and tasks. 
Finally, size judgements were much slower than emotion judgements 
overall. The extra processing time in the former may reflect greater 
Stroop-like interference between simulated visual size and perceived 
font size, which is more obvious when attention is focused on size as 
opposed to emotion. We also observed faster processing times on con
crete than abstract words, which echoes the widely reported processing 
speed differences between concrete and abstract words (Paivio, 1990). 

Table 8 
Bayesian ex-Gaussian mixed-effect model estimates of fixed effects (median of 
posterior samples) on RTs and 95% Credible Intervals (CrI; highest density in
tervals) in Experiment 3.  

Fixed effects b 95% CrI 

Task 52.70 [34.10, 71.50] 
Effective Size Congruency –23.60 [− 28.00, − 19.20] 
CNC − 35.20 [− 45.80, − 24.50] 
Task £ Effective Size Congruency − 14.10 [− 25.70, − 2.71] 
Task £ CNC 9.25 [− 6.70, 25.00] 
Effective Size Congruency £ CNC 11.30 [2.62, 19.70] 
Task £ Effective Size Congruency £ CNC − 7.42 [–23.70, 9.57] 

Note: CNC = Concreteness; CrI = Credible Interval. 

Fig. 5. The posterior distributions for the estimated effects of (A) the interaction between task and effective size congruency, and (B) the effect of effective size 
congruency in the size judgement (green) and emotion judgement (orange) tasks. In both panels, density plots depict the posterior distributions, points depict effect 
estimates (median of the posterior distribution), and horizontal whiskers depict 95% credible intervals (highest density intervals). The scale for density (y-axis) is 
identical across panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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General discussion 

In three experiments, we systematically examined whether and how 
semantic size in abstract concepts may be flexibly grounded in physical 
(visual) size across contexts and tasks. Using a forced association task, 
we found that semantically big abstract concepts were metaphorically 
associated with physically bigger concrete objects while semantically 
small abstract concepts were associated with physically smaller objects. 
These metaphorical associations were specifically driven by size con
gruency and could not be explained by lexical variables such as word 
frequency, length, or semantic associations between abstract concepts 
and concrete objects. This size congruency effect was also observed 
during online lexical processing. Regardless of a word’s concreteness, 
visual recognition of semantically big words was significantly faster 
when they were presented in a larger rather than smaller font while 
recognition times of semantically small words were numerically faster in 
smaller rather than larger font. In a third experiment, we showed that 
the size congruency effect was replicated when participants explicitly 
judged the semantic size of the words but to a significantly lesser extent 
when judging the emotionality of the words. However, contrary to our 
hypothesis, the task-dependent size congruency effect did not vary by 
concreteness. These findings confirmed that semantic size of abstract 
concepts can indeed be represented in physical (visual) size, as a func
tion of context (font size variation) and task demands (forced associa
tions, lexical decision, size vs emotion judgements). They also revealed 
that semantic size of concrete concepts is representationally as flexible 
and context- and task-dependent as that of abstract concepts. 

The current dataset makes three important contributions to the 
literature. First, it provides novel evidence for the “exogenous 
grounding” hypothesis of abstract concepts, beyond what has been 
demonstrated in specific concepts of time (Boroditsky & Ramscar, 2002) 
and transfer (Glenberg et al., 2008). Across three experiments, we 
showed that abstract concepts, despite not having physical referents, can 
be grounded in visual experience of size. Critically, the grounding in 
visual size seems automatic (as observed in lexical decisions) and thus 
may be included in abstract concepts’ canonical representations in lex
ical processing. How do abstract concepts develop such grounding in 
visual experience of size? Intuitively, abstract concepts are unlikely to be 
directly associated with visual size. For example, in our daily life, big 
abstract words like trust, eternal, and crisis are not systematically written 
in larger fonts than small abstract words such as trace, impulse, and 
humble. Instead, abstract concepts may be more likely to ‘acquire’ the 
sense of size through repeated analogic or metaphoric associations with 
concrete objects (Gentner & Asmuth, 2019; Lakoff, 1987). Via the 
mechanism of structural alignment (Gentner, 2010), the structural 
commonality (e.g., in magnitude) between abstract and concrete con
cepts becomes progressively salient, thereby establishing more stable 
connections between abstract concepts and visual experiences of size. It 
is worth noting that the current data cannot address how much of this 
grounding process is driven by metaphoric use or other forms of analogic 
associations. What it does demonstrate is that exogenous experiential 
grounding of abstract concepts is pervasive (beyond special cases of time 
and transfer), with the post hoc inference that it must have developed 
through interactions between abstract and concrete concepts in lan
guage use. 

Second, the current dataset demonstrates that exogenous experien
tial grounding of abstract concepts depends on contexts and tasks. In 
particular, we showed that abstract conceptual grounding in visual size 
was significantly stronger when the task focused on size rather than non- 
size aspects of the word. Our finding speaks against the idea of invariant 
conceptual cores (Machery, 2015), which assumes that conceptual 
representations are fixed and context-independent. Rather, it supports 
the more recent shift towards contextualism, which argues that con
ceptual representations are flexible, and can be heavily influenced by 
context and task (Barsalou, 1993; Connell & Lynott, 2014, p. 20; Lebois 
et al., 2015; Lupyan & Casasanto, 2015; Mazzuca et al., 2022; Wilson & 

Golonka, 2013; Yee & Thompson-Schill, 2016). This has important 
methodological implications as to whether decontextualised tasks like 
the lexical decision task (LDT) or semantic rating tasks are sufficient for 
studying conceptual processing. For example, the LDT has dominated 
the psycholinguistic literature as a ‘all-purpose’ task to study lexical 
processing, as it is context-independent and requires minimal semantic 
activation. If embodied experience is activated during the LDT, it must 
constitute a word’s “conceptual core” – the very essence of a word’s 
meaning, which should be automatically activated across contexts and 
tasks (Moors & De Houwer, 2006). Our evidence, however, contradicts 
this belief. Although we showed a clear interaction between a word’s 
semantic size and visual size in an LDT (Experiment 2) and when par
ticipants judged the size of a word (Experiment 3), this size congruency 
effect was significantly weaker when participants judged the emotion
ality of a word (Experiment 3). The evidence suggests that abstract se
mantic size is unlikely to have a “conceptual core” as such (Machery, 
2015). The sense of size or magnitude is more likely to be created “on the 
fly”, with embodied experiences that are made available under partic
ular task demands. Our finding suggests that the quest for invariant 
conceptual cores may be misguided (Connell & Lynott, 2014; Lebois 
et al., 2015) and that context and task demands may hold the keys in 
unlocking the true nature of conceptual representations. 

The third contribution of the current study extends representational 
flexibility to concrete concepts, advocating a need to move beyond 
dichotomous distinctions between abstract and concrete concepts (cf. 
Barsalou et al., 2018). Contrary to our hypothesis, the size congruency 
effects in concrete concepts were as flexible and task dependent as those 
in abstract concepts. This is surprising because concrete conceptual 
representations are thought to be more bounded and stable than abstract 
concepts. Visual size, as an inherent part of visual experience of concrete 
objects, should always be relevant in representing concrete words such 
as a mountain or caterpillar. However, our findings illustrated that visual 
size representations of concrete objects can be muted when the task at 
hand deems it irrelevant, suggesting that flexibility is an inherent 
property of all concepts, regardless of concreteness. 

In conclusion, our findings provide new evidence that abstract con
cepts can be represented via exogenous concrete experiences. Specif
ically, we show that semantic size in concepts can be represented in 
visual size and that these experiences are flexibly engaged under 
different task demands, regardless of concreteness. Our results suggest 
that psycholinguistic traditions of looking for the conceptual cores of 
words might have been misguided. Future research should focus on 
contextual and task effects on conceptual processing, with flexibility at 
the heart of its theoretical motivation and experimental design. 
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